
VHM Mikrobohrer mit Innenkühlung

ADO-MICRO

"STABILITÄT" UND "HOHE EFFIZIENZ" TIEFLOCHBOHREN MIT KLEINSTEN DURCHMESSERN

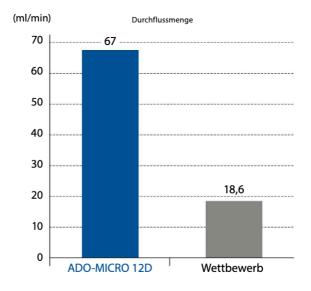
Merkmale die eine optimale Spanabfuhr ermöglichen Nutprofil

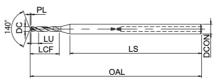
Stabiler Bohrprozess beim Tieflochbohren mit kleinen Durchmessern

Verbreiterung der Nut

Die Späne werden von der Bohrerspitze in der breiter werdenden Nut optimal abgeführt.

Freischliff der hinteren Führungsfase


Möglichkeit zur Aufnahme und Abfuhr von "Mikroschlamm" welche einer der häufigsten Ursachen für Werkzeugbruch bei kleinen Bohrern ist.


Kühlkanäle

Durch das spezielle Kühlkanalsystem (Hohlschaft) wird eine höhere Durchflussmenge erzielt, um eine reibungslose Späneabfuhr zu ermöglichen

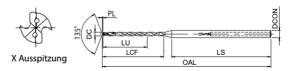
Werkzeug	ADO-MICRO 12D Ø 1,5	Wettbewerb Ø 1,5				
Kühlkanal	Hohlschaft	durchgehend				
Kühlung	Emulsion (interne Zufuhr)					
Kühlmitteldruck	15 bar					
Zeit bis zum Kühl- mittelaustritt	60 Sek.					

ADO-MICRO	Wettbewerb
Hohlschaft	

- Erste Wahl in Qualität und Leistung
- VHM Bohrer mit innerer Kühlmittelzufuhr, IchAda Beschichtung
- Bis zu 2xD
- 17 Abmessungen

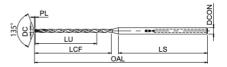
EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
8732001	0,7	47	38,5	1,4	4,2	0,1	3	110,00
8732002	0,75	47	38,3	1,5	4,5	0,1	3	110,00
8732003	0,8	50	41,1	1,6	4,8	0,1	3	110,00
8732004	0,85	50	40,9	1,7	5,1	0,2	3	110,00
8732005	0,9	50	40,7	1,8	5,4	0,2	3	110,00
8732006	0,95	50	40,5	1,9	5,7	0,2	3	110,00
8732007	1	53	42,8	2	6	0,2	3	97,00
8732008	1,1	53	42,4	2,2	6,6	0,2	3	97,00
8732009	1,2	53	41,9	2,4	7,2	0,2	3	97,00
8732010	1,3	53	41,5	2,6	7,8	0,2	3	97,00
8732011	1,4	53	41,1	2,8	8,4	0,3	3	97,00
8732012	1,5	53	40,7	3	9	0,3	3	97,00
8732013	1,6	53	40,3	3,2	9,6	0,3	3	97,00
8732014	1,7	53	39,9	3,4	10,2	0,3	3	97,00
8732015	1,8	53	39,5	3,6	10,8	0,3	3	97,00
8732016	1,9	53	39	3,8	11,4	0,3	3	97,00
8732017	2	58	43,6	4	12	0,4	3	97,00

- Erste Wahl in Qualität und Leistung
- VHM Bohrer mit innerer Kühlmittelzufuhr, IchAda Beschichtung
- Bis zu 5xD
- 19 Abmessungen



EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
8732018	0,7	47	35,7	3,5	7	0,1	3	124,00
8732019	0,75	47	35,3	3,5 3,8	7,5	0,2	3	124,00
8732020	0,8	50	37,9	4	8	0,2	3	124,00
8732021	0,85	50	37,5	4 4,3	8,5	0,2	3	124,00
8732022	0,9	50	37,1	4.5	9	0,2	3	124,00
8732023	0,95	50	36,7	4,8 5 5,5	9,5	0,2	3	124,00
8732024	1	55	40,8	5	10	0,2	3	110,00
8732025	1,1	55	40	5,5	11	0,2	3 3 3 3	110,00
8732026	1,2	60	44,1	6	12	0,2	3	110,00
8732027	1,3	60	43,3	6,5 7 7,5	13	0,3	3	110,00
8732028	1,4	60	42,5	7	14	0,3 0,3	3	110,00
8732029	1,5	60	41,7	7,5	15	0,3	3	110,00
48337155	1,55	60	41,3	7,8	15,5	0,3	3	110,00
8732030	1,6	60	40,9	8	16	0,3	3 3 3 3 3	110,00
8732031	1,7	60	40,1	8,5 9	17	0,4	3	110,00
8732032	1,8	65	44,3	9	18	0,4	3	110,00
48337184	1,84	65	43,9	9,2	18,4	0,4	3	110,00
8732033	1,9 2	65	43,4	9,5	19	0,4	3	110,00
8732034	2	65	42,6	10	20	0,4	3	110,00

- Erste Wahl in Qualität und Leistung
- VHM Bohrer mit innerer Kühlmittelzufuhr, IchAda Beschichtung
- Bis zu 12xD, lange Ausführung
- 11 Abmessungen

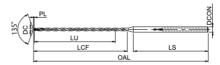

EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
8732035	1	60	38,8	12	17	0,2	3	148,00
8732036	1,1	65	42,3	13,2	18,7	0,2	3	148,00
8732037	1,2	65	40,7	14,4	20,4	0,2	3	148,00
8732038	1,3	65	39,2	15,6	22,1	0,3	3	148,00
8732039	1,4	70	42,7	16,8	23,8	0,3	3	148,00
8732040	1,5	70	41,2	18	25,5	0,3	3	148,00
8732041	1,6	70	39,7	19,2	27,2	0,3	3	148,00
8732042	1,7	73	41,2	20,4	28,9	0,4	3	148,00
8732043	1,8	73	39,7	21,6	30,6	0,4	3	148,00
8732044	1,9	73	38,1	22,8	32,3	0,4	3	148,00
8732045	2	77	40,6	24	34	0,4	3	148,00

ADO-MICRO 15D

Bohren | Vollhartmetall | 15xD

EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
48337120	2	77	34,6	30	40	0,4	3	178,00

- Erste Wahl in Qualität und Leistung
- VHM Bohrer mit innerer Kühlmittelzufuhr, IchAda Beschichtung
- Bis zu 20xD, lange Ausführung
- 11 Abmessungen



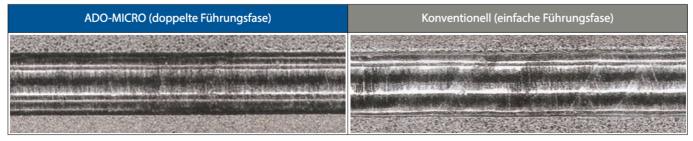
EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
8732046	1	68	39,8	20	24	0,2	3	206,00
8732047	1,1	75	44,6	22	26,4	0,2	3	206,00
8732048	1,2	75	42,3	24	28,8	0,2	3	206,00
8732049	1,3	75	40,1	26	31,2	0,3	3	206,00
8732050	1,4	81	43,9	28	33,6	0,3	3	206,00
8732051	1,5	81	41,7	30	36	0,3	3	206,00
8732052	1,6	81	39,5	32	38,4	0,3	3	206,00
8732053	1,7	88	44,3	34	40,8	0,4	3	206,00
8732054	1,8	88	42,1	36	43,2	0,4	3	206,00
8732055	1,9	88	39,8	38	45,6	0,4	3	206,00
8732056	2	95	44,6	40	48	0,4	3	206,00

ADO-MICRO 25D

Bohren | Vollhartmetall | 25xD

EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
48337320	2	105	44,6	50	58	0,4	3	242,00

- Erste Wahl in Qualität und Leistung
- VHM Bohrer mit innerer Kühlmittelzufuhr, IchAda Beschichtung
- Bis zu 30xD, lange Ausführung
- 11 Abmessungen



EDP	DC	OAL	LS	LU	LCF	PL	DCON	Preis
8732057	1	77	38,8	30	34	0,2	3	272,00
8732058	1,1	86	44,6	33	37,4	0,2	3	272,00
8732059	1,2	86	41,3	36	40,8	0,2	3	272,00
8732060	1,3	86	38,1	39	44,2	0,3	3	272,00
8732061	1,4	95	43,9	42	47,6	0,3	3	272,00
8732062	1,5	95	40,7	45	51	0,3	3	272,00
8732063	1,6	101	43,5	48	54,4	0,3	3	272,00
8732064	1,7	101	40,3	51	57,8	0,4	3	272,00
8732065	1,8	107	43,1	54	61,2	0,4	3	272,00
8732066	1,9	107	39,8	57	64,6	0,4	3	272,00
8732067	2	112	41,6	60	68	0,4	3	272,00

Stabiler Bohrprozess

Stabiler Prozess sogar bei tiefen Bohrungen

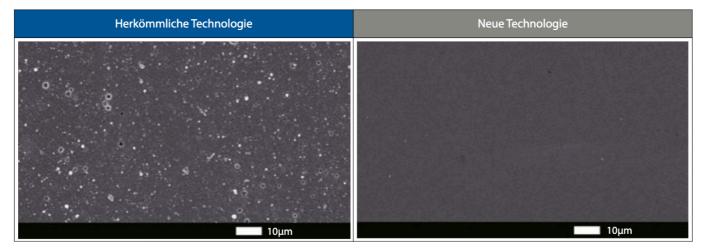
Die doppelte Führungsfase erhöht die Positionsgenauigkeit und Geradheit der Bohrung und ermöglicht einen stabilen Prozess. Auch die Riefenbildung wird minimiert und die Oberflächengüte verbessert.


Werkzeug: ADO-MICRO 20D Ø 2 Material: 1.4301 Bohrtiefe: 40mm

Hohe Effizienz

9 - fache Bohrleistung durch Bohren in einem Zug

Bohren ohne Lüften ist auch bei tiefen Bohrungen möglich und ermöglicht einen effizienten Prozess


Werkzeug	ADO-MICRO 12D Ø 15	Konventionell
Material	1.4301	
Bearbeitung	Bohren ohne Lüften	Bohren in 0,5mm Steps
Schnitt- geschwind.	50m/min (10.610min ⁻¹)	28m/min (5.940min ⁻¹)
Vorschub	318mm (0,03mm/U)	89mm (0,015mm/U)
Bohrtiefe	12mm (Grundloch) mit I	Pilotbohrung
Kühlung	Emulsion (interne Zufuhr)	Emulsion (externe Zufuhr)
Maschine	vertikales BAZ (HSK-A40))

Beschichtung

IchAda Beschichtung mit einer sehr glatten Oberfläche

Die sehr glatte Oberfläche in Verbindung mit einer hohen Schichthaftung und Temperaturbeständigkeit ermöglichen eine hohe Standzeit auch bei kleinen Durchmessern.

Bohren | Vollhartmetall

Hohe Standzeit durch stabilen Bohrprozess

Vorteile der angepassten Nutengeometrie

Werkzeug	ADO-MICRO 20D Ø 2
Material	1.4301
Schnitt- geschwind.	50m/min (7.960min ⁻¹)
Vorschub	557mm/min (0,07mm/U)
Bohrtiefe	38mm (Grundloch) mit Pilotbohrung
Kühlung	Emulsion (interne Zufuhr)
Kühlmittel- druck	30 bar
Maschine	vertikales BAZ (HSK-A40)

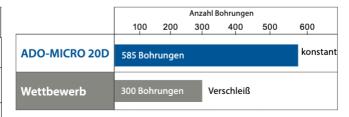
	F	nzahl Boł	rungen	
	500	1.000	1.500	2.000
ADO MICRO 20D	1.500 Bohrungen		50111	neidkanten- chleiß
ADO-MICRO 20D	1.200 Bohrungen			
Wettbewerb A	500 Bohrungen		atzungen an hmesser	n Außen-
Wettbewerb B	246 Bohrungen	läng	ere Späne	

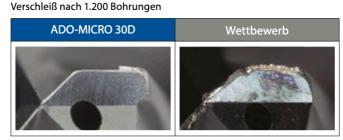


Hoher Volumenstrom ermöglicht einen stabilen Bohrprozess

Vorteile der großen Kühlkanäle

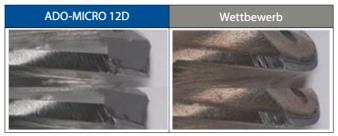
Werkzeug	ADO-MICRO 5D Ø 0,7					
Material	1.4301					
Schnitt- geschwind.	30m/min (13.640min ⁻¹)					
Vorschub	136mm/min (0,01mm/U)					
Bohrtiefe	3,5mm (Grundloch)					
Kühlung	Emulsion (interne Zufuhr)					
Kühlmittel- druck	50 bar					
Maschine	vertikales BAZ(HSK-A63)					


ADO-MICRO 5D	Wettbewerb
1.800 Bohrungen	600 Bohrungen
00	


Effizienzsteigerung bei der Bearbeitung von Schrauben aus einer Titanlegierung

Werkzeug	ADO-MICRO 20D Ø 1,2	Wettbewerb Ø 1,2							
Material	Ti-Al-4V								
Bearbeitung	Bohren ohne Lüften	Bohren in 0,12mm Steps							
Schnitt- geschwind.	35m/min (9.300min ⁻¹)	10m/min (2.600min ⁻¹)							
Vorschub	167mm/min (0,02mm/U) in etwa 30mm/min (0,01mm/U)								
Bohrtiefe	15mm (Grundloch) mit Pilotbohrung								
Kühlung	Emulsion (in	terne Zufuhr)							
Kühlmittel- druck	20 bar								
Maschine	vertikales	BAZ (BT30)							

Exzellente Ergebnisse in Kombination "Drehautomat + Kühlung mit Öl"


Werkzeug	ADO-MICRO 30D Ø 1,6							
Material	1.4125							
Schnitt- geschwind.	20m/min (4.000min ⁻¹)							
Vorschub 120mm/min (0,03mm/U)								
Bohrtiefe	45mm (Grundloch) mit Pilotbohrung							
Kühlung	Öl (interne Zufuhr)							
Kühlmittel- druck	70 bar							
Maschine	CNC Drehmaschine							

Verschleiß beim Bohren von speziellen Stahlsorten

Werkzeug	ADO-MICRO 12D Ø 1,5					
Material	1.3505					
Schnitt- geschwind.	45m/min (9.550min ⁻¹)					
Vorschub	430mm/min (0,045mm/U)					
Bohrtiefe	9mm (Grundloch) mit Pilotbohrung					
Kühlung	Emulsion (interne Zufuhr)					
Kühlmittel- druck	15 bar					
Maschine	vertikales BAZ (HSK-A40)					

Verschleiß nach 900 Bohrungen

Weiter einsetzbar

Führungsfase ist verschlissen

SCHNITTDATEN

Bohren | Vollhartmetall | Schnittdaten

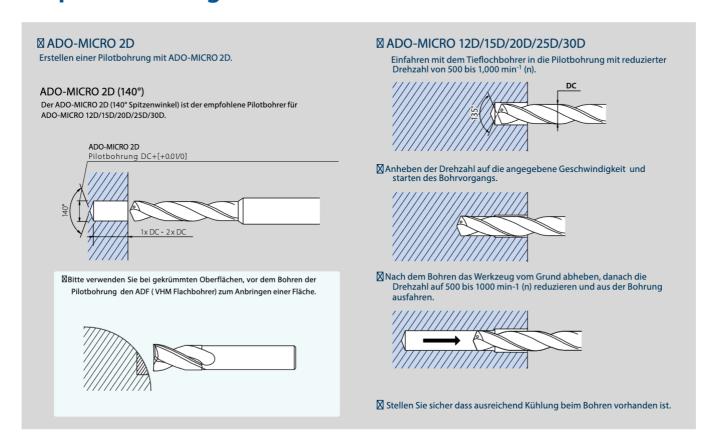
ADO-MICRO 2D/5D

	drigem Kohlenstoffgehalt		Kohlenstoffstahl C45 ~210HB ~710 N/mm ²		Legierter Stahl 42CrMo4 710 ~900 N/mm²		Legierter Stahl 42CrMo4 900 ~ 1.200 N/mm²			stensitischer stfreier Stahl 1.4301	Speziell Legierter Stahl 1.3505	
Vc	Vc 20~40~60m/min		20~40~60m/min		20~40~60m/min		20~30~40m/min		20~30~70m/min		25~35~45m/min	
Ø	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)
0,7	18.200	0,007 ~ 0,021	18.200	0,007 ~ 0,021	18.200	0,014 ~ 0,028	13.600	0,014 ~ 0,028	13.600	0,007 ~ 0,021	15.900	0,007 ~ 0,021
1	12.700	0,01 ~ 0,03	12.700	0,01 ~ 0,03	12.700	0,02 ~ 0,04	9.500	0,02 ~ 0,04	9.500	0,01 ~ 0,03	11.100	0,01 ~ 0,03
1,5	8.500	0,015 ~ 0,045	8.500	0,015 ~ 0,045	8.500	0,03 ~ 0,06	6.400	0,03 ~ 0,06	6.400	0,015 ~ 0,045	7.400	0,015 ~ 0,045
2	6.400	0,02 ~ 0,06	6.400	0,02 ~ 0,06	6.400	0,04 ~ 0,08	4.800	0,04 ~ 0,08	4.800	0,02 ~ 0,06	5.600	0,02 ~ 0,06

		Gusseisen Kugelgraphitguss GG-25 GGG-45 GGG-60 ~350N/mm² 400 ~600 N/mm²		Aluminium Legierung Aluminium AC4C - ADC A5052 - A7075			Tita	nlegierung	Nickellegierungen Inconel 718			
Vc	20~5	20~50~60m/min 30~40~50m/min		0~50m/min	30~50~70m/min		20~40~60m/min		40~50~60m/min		5~10~15m/min	
ø	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)
0,7	22.700	0,014 ~ 0,028	18.200	0,014 ~ 0,028	22.700	0,014 ~ 0,042	18.200	0,007 ~ 0,021	22.700	0,011 ~ 0,018	4.500	0,004 ~ 0,014
1	15.900	0,02 ~ 0,04	12.700	0,02 ~ 0,04	15.900	0,02 ~ 0,06	12.700	0,01 ~ 0,03	15.900	0,015 ~ 0,025	3.200	0,005 ~ 0,02
1,5	10.600	0,03 ~ 0,06	8.500	0,03 ~ 0,06	10.600	0,03 ~ 0,09	8.500	0,015 ~ 0,045	10.600	0,023 ~ 0,038	2.100	0,008 ~ 0,03
2	8.000	0,04 ~ 0,08	6.400	0,04 ~ 0,08	8.000	0,04 ~ 0,12	6.400	0,02 ~ 0,06	8.000	0,03 ~ 0,05	1.600	0,01 ~ 0,04

- 1. Die Schnittdatentabelle basiert auf der Verwendung von wasserlöslichem Kühlmittel und interner Zufuhr.
- 2. Bitte verwenden Sie ein hochwertiges Kühlmittel mit einem Verdünnungsfaktor 1:20 (ca. 5% Ölanteil).
- 3. Verwenden Sie einen hochwertigen Filter (ca. 3 μ m bis 5 μ m).
- 4. Obwohl der empfohlenene Kühlmitteldruck 30 bar oder mehr beträgt, stellen Sie ihn bitte entsprechend ein, wenn die Durchflussmenge auf Grund der Konzentration des verwendeten Kühlmittels nicht zufriedenstellend ist.
- 5. Für eine genaue Bearbeitung, sollte der Rundlauf des Werkzeuges am Schaft weniger als 0,002 μm betragen.
- 6. Bei Werkstoffen mit schlechten Spanbrucheigenschaften bohren Sie bitte in Steps.
- 7. Verwenden Sie bei der Bearbeitung von Magnesiumlegierungen immer die vom Schneidflüssigkeitshersteller empfohlene Schneidflüssigkeit. Seien Sie vorsichtig beim Bohren, die Späne sind leicht entflammbar und können bei unsachgemäßer Handhabung ein Brandrisiko darstellen.

ADO-MICRO 12D/15D/20D/25D/30D


	- drigem Kohlenstoffgehalt		Kohlenstoffstahl C45 ~210HB ~710 N/mm²		Legierter Stahl 42CrMo4 710 ~ 900 N/mm²		Legierter Stahl 42CrMo4 900 ~ 1.200 N/mm²			stensitischer tfreier Stahl 1.4301	Speziell Legierter Stahl 1.3505	
Vc	20~40~60m/min		20~40~60m/min		20~40~60m/min		20~30~40m/min		20~30~70m/min		25~35~45m/min	
Ø	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)
1	12.700	0,01 ~ 0,03	12.700	0,01 ~ 0,03	12.700	0,02 ~ 0,04	9.500	0,02 ~ 0,04	9.500	0,01 ~ 0,03	11.100	0,01 ~ 0,03
1,5	8.500	0,015 ~ 0,045	8.500	0,015 ~ 0,045	8.500	0,03 ~ 0,06	6.400	0,03 ~ 0,06	6.400	0,015 ~ 0,045	7.400	0,015 ~ 0,045
2	6.400	0,02 ~ 0,06	6.400	0,02 ~ 0,06	6.400	0,04 ~ 0,08	4.800	0,04 ~ 0,08	4.800	0,02 ~ 0,06	5.600	0,02 ~ 0,06

	Gusseisen Kugelgraphitguss GG-25 GGG-45 GGG-60 ~350N/mm² 400 ~ 600 N/mm²		Aluminium Legierung AC4C - ADC		Aluminium A5052 - A7075		Titanlegierung		Nickellegierungen Inconel 718			
Vc	20~50~60m/min		30~40~50m/min		30~50~70m/min		20~40~60m/min		40~50~60m/min		5~10~15m/min	
Ø	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)	S (min ⁻¹)	F (mm/U)
1	15.900	0,02 ~ 0,04	12.700	0,02 ~ 0,04	15.900	0,02 ~ 0,06	12.700	0,01 ~ 0,03	15.900	0,015 ~ 0,025	3.200	0,005 ~ 0,02
1,5	10.600	0,03 ~ 0,06	8.500	0,03 ~ 0,06	10.600	0,03 ~ 0,09	8.500	0,015 ~ 0,045	10.600	0,023 ~ 0,038	2.100	0,008 ~ 0,03
2	8.000	0,04 ~ 0,08	6.400	0,04 ~ 0,08	8.000	0,04 ~ 0,12	6.400	0,02 ~ 0,06	8.000	0,03 ~ 0,05	1.600	0,01 ~ 0,04

- 1. Die Schnittdatentabelle basiert auf der Verwendung von wasserlöslichem Kühlmittel und interner Zufuhr.
- 2. Bitte verwenden Sie ein hochwertiges Kühlmittel mit einem Verdünnungsfaktor 1:20 (ca. 5% Ölanteil).
- 3. Verwenden Sie einen hochwertigen Filter (ca. 3µm bis 5 µm).
- 4. Obwohl der empfohlenene Kühlmitteldruck 30 bar oder mehr beträgt, stellen Sie ihn bitte entsprechend ein, wenn die Durchflussmenge auf Grund der Konzentration des verwendeten Kühlmittels nicht zufriedenstellend ist.
- 5. Für eine genaue Bearbeitung, sollte der Rundlauf des Werkzeuges am Schaft weniger als 0,002 µm betragen.
- 6. Bei Werkstoffen mit schlechten Spanbrucheigenschaften bohren Sie bitte in Steps.
- 7. Für die Werkzeuge ab 12xD benutzen Sie bitte die 2D Variante um eine Pilotbohrung zu erstellen.
- 8. Verwenden Sie bei der Bearbeitung von Magnesiumlegierungen immer die vom Schneidflüssigkeitshersteller empfohlene Schneidflüssigkeit. Seien Sie vorsichtig beim Bohren, die Späne sind leicht entflammbar und können bei unsachgemäßer Handhabung ein Brandrisiko darstellen.

Empfohlene Vorgehensweise beim Tieflochbohren

Für Bohrungen größer Ø2

AD/ADO

Hartmetallbohrer Serie für rostfreien Stahl und Titaniumlegierungen

ADO-SUS

SCHWEDEN

Niederlassung von OSG SCANDINAVIA Abrahams Gränd 8 295 35 Bromölla Schweden Tel: +46 40 41 22 55 Fax: +46 40 41 32 55 osg@osg-scandinavia.com

OSG SKANDINAVIEN

(Für skandinavische Länder) Langebjergvaenget 16 4000 Roskilde Dänemark Tel: +45 46 75 65 55 Fax: +45 46 75 67 00 osg@osg-scandinavia.com

OSG NIEDERLANDE

Bedrijfsweg 5 3481 MG Harmelen Niederlande Tel: +31 348 44 2764 Fax: +31 348 44 2144 info@osg-nl.com

OSG UK

Shelton house, 5 Bentalls Pipps Hill Ind Est, Basildon Essex SS14 3BY Vereinigtes Königreich Tel +44 (0)1268 567660 Fax +44 (0)1268 567661 sales@osg-uk.com

OSG EUROPE LOGISTICS

Zentrale Europa

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord Belgien Tel: +32 10 23 05 07 Fax: +32 10 23 05 51 info@osgeurope.com

OSG BELUX

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord Belgien Tel: +32 10 23 05 11 Fax: +32 10 23 05 31 info@osg-belgium.com

OSG FRANKREICH

Paris Nord 2 385 rue de la Belle Etoile, 4 allée du Ponant BP 66191 Roissy en France F-95974 Roissy Ch. De Gaule Cedex Frankreich Tel: +33 1 49 90 10 10 Fax: +33 1 49 90 10 15 sales@osg-france.com

OSG COMAHER

Bekolarra 4 E - 01010 Vitoria-Gasteiz Spanien Tel: +34 945 242 400 Fax: +34 945 228 883 osg-comaher@osg-comaher.com

OSG GmbH Zweigniederlassung Deutschland

Siemensstraße 13 D-61352 Bad Homburg Deutschland Tel: +49 6172 10 62 06 Fax: +49 6172 10 62 13 verkauf@wexo.com

I - 10142 Torino

Tel: +39 0117705211

Fax: +39 0117071402

info@osg-italia.it

Italien

OSG GmbH Zentrale Deutschland

Karl-Ehmann-Str. 25 D - 73037 Göppingen Germany Tel: +49 7161 6064 - 0 Fax: +49 7161 6064 - 444 info@osg-germany.de

OSG GmbH

Zweigniederlassung Deutschland

Siemensstraße 13 D-61352 Bad Homburg Deutschland Tel: +49 6172 10 62 06 Fax: +49 6172 10 62 13 verkauf@wexo.com

OSG EUROPE LOGISTICS

Zentrale Europa

Avenue Lavoisier 1 B-1300 Z.I. Wavre - Nord Belgium Tel: +32 10 23 05 07 Fax: +32 10 23 05 11 info@osgeurope.com

Österreich

Zweigniederlassung Österreich

Messestraße 1 A-6850 Dornbirn Tel.: +49 7161 6064-0 Fax: + 49 7161 6064-444 info@osg-germany.de

Vischer & Bolli AG

Im Schossacher 17 CH-8600 Dübendorf Schweiz Tel.: +41 44 802 15 15 Fax: +41 44 802 15 95 info@vb-tools.com

All rights reserved. © OSG Europe 2025

Der Verkauf unserer Waren erfolgt ausschließlich zu unseren allgemeinen Geschäftsbedingungen welche Sie jederzeit anfordern können oder online unter http://www.osg-germany.de/AGB.pdf einsehen können.

http://www.osg-germany.de/AGB.pdf einsehen können.

Alle Preise sind in Euro je Stück. Hinzu kommt der gesetzliche, am Tag der Bestellung
gültige Mehrwertsteuersatz. Die Preise sind freibleibend. In diesem Prospekt genannten
Daten und gezeigten Darstellungen dienen nur dem Zweck der Beschreibung der
Produkte. Änderungen jeder Art oder Druckfehler von technischen Daten berechtigen
nicht zu Ansprüchen. Bildliche Darstellungen sind nicht verbindlich und sind keine
Richtlinie über Art oder Eigenschaft. Technische Änderungen, Weiterentwicklungen
oder Normänderungen sind vorbehalten. Nachdruck von Text und Bildern, auch
auszugsweise, ist ohne unsere Genehmigung nicht gestattet.

